Harada, Y. \& Iitaka, Y. (1974a). Acta Cryst. B30, 726730.

Harada, Y. \& Iitaka, Y. (1974b). Acta Cryst. B30, 1452-1459.
Haskell, T. H. \& Bartz, Q. R. (1959). Antibiot. Ann. pp. 505-509.
Hauptman, H. \& Karle, J. (1956). Acta Cryst. 9, 45-55.
Ichikawa, T. \& Iitaka, Y. (1969). Acta Cryst. B25, 1824-1833.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99-101. Birmingham: Kynoch Press.
Косн, М. Н. J. (1974). Acta Cryst. A30, 67-70.
Marsh, R. E., Corey, R. B. \& Pauling, L. (1955). Acta Cryst. 8, 710-715.
Marsh, R. E. \& Donohue, J. (1967). Advanc. Protein Chem. 22, 235-256.
Munk, M. E., Nelson, D. B., Antosz, F. J., Herald, D. J. Jr \& Haskell, T. H. (1968). J. Amer. Chem. Soc. 90, 1087-1089.

Pauling, L. \& Corey, R. B. (1951). Proc. Natl. Acad. Sci. U.S. 37, 235-240.
Pauling, L. \& Corey, R. B. (1953). Proc. Natl. Acad. Sci. U.S. 39, 253-256.
Penfold, B. R. \& White, J. C. B. (1959). Acta Cryst. 12, 130-135.
Ramachandran, G. N., Ramakrishnan, C. \& Sasisekharan, V. (1963). J. Mol. Biol. 7, 95-99.
Ramakrishnan, C. \& Ramachandran, G. N. (1965). Biophys. J. 5, 909-933.
Rollett, J. S. \& Carruthers, R. S. (1974). Private communication.
Sasisekharan, V. (1962). Collagen, edited by N. Ramanathan, pp. 39-78. New York: Interscience.
Schellman, J. A. \& Schellman, C. (1964). The Proteins, edited by H. Neurath, Vol. II, pp. 1-371. New York: Academic Press.
Wetherington, J. B. \& Moncrief, J. W. (1975). Acta Cryst. B31, 501-511.

X-ray Crystal Structures of Hexabromotellurates of Organic Ions. I. Crystal Structure of the Hexabromotellurate of DL- α-Ammonio-n-butyric Acid

By Françoise Dahan and Odette Lefèbvre-Soubeyran
Laboratoire de Cristallochimie, CNRS, ER $N^{\circ} 63$, Tour 44, 11 Quai Saint-Bernard, 75005-Paris, France

(Received 26 March 1976; accepted 30 April 1976)

Abstract

The structure of the hexabromotellurate of DL- α-ammonio- n-butyric acid has been determined by the heavy-atom method and refined by full-matrix least squares to a final R of 0.041 for 1049 independent reflexions. Crystals are monoclinic, space group $P 2_{1} / c$, with $a=11.443$ (4), $b=7.881$ (3), $c=12.886$ (4) \AA, $\beta=112 \cdot 19(5)^{\circ}, Z=2$. The crystalline cohesion is controlled by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and by intermolecular van der Waals forces.

Introduction

Gillespie \& Nyholm (1957) predicted that hexacoordinated complexes of $\mathrm{Te}^{\mathrm{IV}}$ and $\mathrm{Se}^{\mathrm{IV}}$ should not possess a regular octahedral structure but rather one based on seven coordination with a lone pair of electrons occupying the seventh position. Howewer, infrared and Raman spectroscopy (Adams \& Morris, 1967), nuclear quadrupole resonance spectroscopy (Greenwood, 1970) and electronic spectra (Couch, Wilkins, Rossman \& Gray, 1970) showed no distortion of TeX_{6}^{2-} octahedra ($\mathrm{X}=\mathrm{Cl}$ or Br). The general conclusion made by Johnstone, Jones \& Vasudev (1972) is that the Te atom employs essentially pure p orbitals in bonding, the $5 s^{2}$ electrons being stereochemically inactive. Thus the TeX_{6}^{2-} ions are octahedral and have relatively long weak $\mathrm{Te}-\mathrm{X}$ bonds when electronegativity of the ligand increases. No significant distortion of TeBr_{6}^{2-} octahedra was observed in the few X-ray structures reported, $\mathrm{K}_{2} \mathrm{TeBr}_{6}$ (Brown, 1964), $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{TeBr}_{6}$ and $\mathrm{Cs}_{2} \mathrm{TeBr}_{6}$ (Das \& Brown, 1966).

Crystalline salts containing TeBr_{6}^{2-} anions, and cations of protonated amino acids or protonated amides, have been synthesized (Dobrowolski \& Pastuszak, 1970; Bujewski \& Dobrowolski, 1973). Professor Dobrowolski suggested an X-ray study of a compound of each kind in order to compare the regularity of the TeBr_{6}^{2-} ions and the influence of the different organic cations.

The structure described here is the hexabromotellurate of DL- α-ammonio- n-butyric acid

Experimental

A single crystal $0.15 \times 0.075 \times 0.075 \mathrm{~mm}$ was selected for the X -ray investigation.

The intensities were collected on a CAD-3 EnrafNonius diffractometer in the $\theta-20$ scan mode. The range of each scan consisted of the base width of 1.0° at $2 \theta=0^{\circ}$ and an increment, $\Delta(2 \theta)=0.5 \tan \theta^{\circ}$, to al-
low for spectral dispersion; background counts were taken at the extremes of the scan for a time equal to the time required for the scan itself. With Ni-filtered $\mathrm{Cu} K \alpha$ radiation, 2022 reflexions up to $\theta=66^{\circ}$ were measured. Throughout the data collection, two reference reflexions were recorded after each sequence of 40 measured reflexions. The intensities of the standards remained constant to within $\pm 2.5 \%$.

With $I \leq 3 \sigma(I)$, 973 reflexions were considered unobserved. Standard deviations $\sigma(I)$ were calculated from

$$
\sigma(I)=\left\{I+I_{1}+I_{2}+\left[0.02\left(I-I_{1}-I_{2}\right)\right]^{2}\right\}^{1 / 2},
$$

where I_{1} and I_{2} are the background and I the peak counts. The remaining 1049 reflexions were used in the structure determination. The intensities were corrected for Lorentz and polarization effects, but not for absorption.

Crystal data are given in Table 1.

Table 1. Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}_{2}\right)_{2} \mathrm{TeBr}_{6}$, M.W. 815
$F(000)=752$
Space group $P 2_{1} / c$
$a=11.443$ (4),$b=7.881$ (3), $c=12 \cdot 886$ (4) \AA
$\beta=112 \cdot 19(5)^{\circ}, U=1076 \AA^{3}, Z=2$
$D_{m}=2 \cdot 52, D_{c}=2.516 \mathrm{~g} \mathrm{~cm}^{-3}$
$\mu=262 \mathrm{~cm}^{-1}[\lambda(\mathrm{Cu} K \alpha)=1 \cdot 5418 \AA]$

Structure determination

The structure was solved by the heavy-atom method. The Te atom is at the origin in space group $P 2_{1} / c$. A Fourier map phased on Te gave the three Br atoms of the asymmetric unit. From the subsequent Fourier synthesis all the non-hydrogen atoms were revealed.
Calculations were performed on an IBM 370/168 computer with a local version of ORFLS (Busing, Martin \& Levy, 1962) for refinement and with NRC programs (Ahmed, Hall, Pippy \& Huber, 1966) for geometrical calculations.
Scattering factors were taken from International Tables for X-ray Crystallography (1962) for $\mathrm{Te}, \mathrm{Br}^{-}$, O, N and C and from Stewart, Davidson \& Simpson
(1965) for H. Correction for anomalous dispersion was carried out for $\mathrm{Te}\left(\Delta f^{\prime}=-0 \cdot 9\right)$ and $\mathrm{Br}\left(4 f^{\prime}=\right.$ -0.9) atoms.

Full-matrix least-squares calculations were used to refine the atomic coordinates and isotropic temperature factors of all non-hydrogen atoms. R fell to $0 \cdot 108$ and was reduced to 0.050 with anisotropic thermal parameters $\left[R=\sum w\left(| | F_{o}\left|-\left|F_{c}\right|\right) / \sum w\left|F_{o}\right|\right]\right.$.

All H atoms were located in a difference synthesis. The refinement of their coordinates (the isotropic thermal parameters were those of the atoms to which they are bonded) resulted in an R of 0.041 . All reflexions were assigned unit weight. The final R_{w} was 0.045 $\left\{R_{w}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}\right\}$.

Fig. 1. ORTEP structure viewed along a. Thermal ellipsoids are at 50% probability.

Table 2. Fractional atomic coordinates ($\times 10^{4}$) and thermal parameters ($\times 10^{4}$)
$T=\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$. Estimated standard deviations $\left(\times 10^{4}\right)$ are in parentheses.
$B\left(\right.$ in $\left.\AA^{2}\right)$ is $\frac{4}{3}\left(\beta_{11} a^{2}+\beta_{22} b^{2}+\beta_{33} c^{2}+2 \beta_{12} a b \cos \gamma+2 \beta_{13} a c \cos \beta+2 \beta_{23} b c \cos \alpha\right)$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	B
Te	0	0	0	67 (2)	86 (3)	46 (1)	0 (2)	11 (1)	3 (2)	2.69
$\operatorname{Br}(1)$	1184 (2)	2137 (3)	-915 (2)	97 (2)	136 (4)	73 (2)	-10 (3)	35 (2)	9 (2)	3.90
Br(2)	-748(2)	2756 (3)	823 (2)	100 (3)	123 (4)	63 (2)	11 (3)	24 (2)	-15 (2)	$3 \cdot 81$
$\mathrm{Br}(3)$	2088 (2)	-222 (3)	1879 (2)	98 (3)	120 (4)	72 (2)	-8 (3)	-7 (2)	6 (2)	4.39
$\mathrm{O}(1)$	4612 (17)	3527 (22)	3855 (13)	134 (24)	202 (38)	72 (16)	48 (25)	0 (15)	-21 (19)	$5 \cdot 64$
$\mathrm{O}(2)$	3722 (15)	5964 (18)	4068 (13)	102 (20)	122 (29)	76 (15)	23 (20)	12 (14)	-6 (18)	$4 \cdot 38$
N	1732 (16)	5532 (22)	2179 (15)	73 (21)	146 (36)	63 (15)	2 (22)	6 (14)	17 (19)	3.96
C(1)	3793 (19)	4729 (27)	3530 (17)	65 (23)	138 (44)	67 (18)	62 (28)	21 (16)	26 (24)	$3 \cdot 37$
C(2)	2857 (19)	4483 (28)	2353 (15)	68 (23)	165 (45)	32 (15)	26 (26)	-17(15)	-21 (20)	3.71
C(3)	3407 (25)	5068 (41)	1462 (19)	132 (34)	301 (71)	64 (20)	79 (47)	22 (21)	-22 (37)	6.14
C(4)	4393 (27)	3918 (47)	1373 (27)	109 (36)	396 (92)	132 (34)	13 (49)	62 (29)	-31 (47)	$7 \cdot 05$

The final atomic and thermal parameters are listed in Tables 2 and 3.*

Description and discussion of the structure

Fig. 1. shows the $O R T E P$ structure projection along a (Johnson, 1965) with the atomic numbering.

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31863 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Fig. 2. Bond lengths (\AA) in the $\mathrm{DL}-\alpha$-ammonio- n-butyric acid ion. $\bar{\sigma}(\mathrm{C}-\mathrm{O})=\bar{\sigma}(\mathrm{C}-\mathrm{N})=\bar{\sigma}(\mathrm{C}-\mathrm{C})=0.03 \AA ; \bar{\sigma}(\mathrm{O}-\mathrm{H})=\bar{\sigma}(\mathrm{N}-\mathrm{H})$ $=\bar{\sigma}(\mathrm{C}-\mathrm{H})=0.2 \AA$.

Fig. 3. Bond angles (${ }^{\circ}$) in the $\mathrm{DL}-\alpha$-ammonio- n-butyric acid ion. The average e.s.d.'s are 2° for angles not involving H atoms and 13° for the others.

Table 3. Fractional coordinates $\left(\times 10^{3}\right)$ of the hydrogen atoms with e.s.d.'s $\left(\times 10^{3}\right)$ in parentheses

	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}
H(O1)	$516(21)$	$369(30)$	$466(18)$
H1(N)	$134(20)$	$550(32)$	$284(20)$
H2(N)	$99(19)$	$557(26)$	$136(17)$
H3(N)	$195(18)$	$657(26)$	$225(15)$
H1(C3)	$381(21)$	$633(31)$	$170(18)$
H2(C3)	$262(19)$	$510(30)$	$65(17)$
H1(C4)	$516(25)$	$354(33)$	$218(21)$
H2(C4)	$391(24)$	$278(36)$	$115(21)$
H3(C4)	$476(23)$	$411(34)$	$73(19)$
H(C2)	$258(18)$	$311(29)$	$220(18)$

Hexabromotellurate anion

Interatomic distances and angles for the TeBr_{6}^{2-} ion are listed in Table 4. Detailed examination of the individual values indicates a slight angular distortion of the octahedron. The $\mathrm{Te}-\mathrm{Br}$ distances range from 2.689 to $2.695 \AA$, the $\mathrm{Br}-\mathrm{Br}$ distances from 3.725 to $3.895 \AA$, the $\mathrm{Br}-\mathrm{Te}-\mathrm{Br}$ angles from 87.44 to 92.56°. The deviation from cubic symmetry is not large.

Table 4. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for the TeBr_{6}^{2-} ion with e.s.d.'s in parentheses
ii denotes the centrosymmetric position $\bar{x}, \bar{y}, \bar{z}$.

$\mathrm{Te}-\mathrm{Br}(1)$	2.695 (3)	$\mathrm{Te}-\mathrm{Br}$ (3)	2.689 (3)
$\mathrm{Te}-\mathrm{Br}$ (2)	$2 \cdot 695$ (3)	Mean $\mathrm{Te}-\mathrm{Br}$	$2 \cdot 693$
$\mathrm{Br}(1)-\mathrm{Br}(2)$	3.725 (4)	$\mathrm{Br}(1)-\mathrm{Te}-\mathrm{Br}(2)$	87.44 (8)
$\operatorname{Br}(1)-\operatorname{Br}(3)$	$3 \cdot 830$ (3)	$\mathrm{Br}(1)-\mathrm{Te}-\mathrm{Br}(3)$	90.68 (8)
$\operatorname{Br}(2)-\operatorname{Br}(3)$	3.815 (4)	$\mathrm{Br}(2)-\mathrm{Te}-\mathrm{Br}(3)$	90.25 (8)
$\mathrm{Br}(1)-\mathrm{Br}(2)^{19}$	3.895 (4)	$\mathrm{Br}(1)-\mathrm{Te}-\mathrm{Br}(2)^{1 i}$	92.56 (8)
$\mathrm{Br}(1)-\mathrm{Br}(3)^{11}$	$3 \cdot 785$ (4)	$\mathrm{Br}(1)-\mathrm{Te}-\mathrm{Br}(3)^{11}$	89.32 (8)
$\mathrm{Br}(2)-\mathrm{Br}(3)^{11}$	3.799 (3)	$\mathrm{Br}(2)-\mathrm{Te}-\mathrm{Br}(3){ }^{11}$	89.75 (8)
Mean $\mathrm{Br}-\mathrm{Br}$	3.808	Mean $\mathrm{Br}-\mathrm{Te}-\mathrm{Br}$	90.00

In $\mathrm{K}_{2} \mathrm{TeBr}_{6}$ (Brown, 1964) the mean $\mathrm{Te}-\mathrm{Br}$ is $2.693 \AA$ and the $\mathrm{Br}-\mathrm{Te}-\mathrm{Br}$ angles all lie within 0.3° of 90.0°. The $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{TeBr}_{6}$ and $\mathrm{Cs}_{2} \mathrm{TeBr}_{6}$ structures (Das \& Brown, 1966) present perfect regular TeBr_{6}^{2-} octahedra by symmetry. $\mathrm{Te}-\mathrm{Br}$ is $2 \cdot 681$ and $2 \cdot 695 \AA$ respectively. The mean $\mathrm{Te}-\mathrm{Br}(2.693 \AA)$ in this study is comparable with that found in the other structures. $\mathrm{Te}-\mathrm{Br}$ bonds lie between covalent bonds, $2 \cdot 66$, and ionic bonds, $2 \cdot 76$, the octahedral $\mathrm{Te}^{\mathrm{IV}}$ radius being $1 \cdot 52$, the covalent Br radius $1 \cdot 14$, and the ionic bond $\mathrm{Te}^{4+} \ldots \mathrm{Br}^{-} 2 \cdot 76 \AA$ (Pauling, 1960).

DL- α-Ammonio- n-butyric acid

Bond lengths and angles are shown in Figs. 2 and 3. They are in good agreement with those found by Ichikawa \& Iitaka (1968) in DL- α-amino- n-butyric acid. The carboxyl group is planar within experimental error (Table 5).

Hydrogen bonding and crystal packing

The hydrogen bonds and angles are listed in Table 6, as are the $\mathrm{Br} \cdots \mathrm{Br}$ intermolecular distances less than $4 \cdot 20 \AA$. The hydrogen-bonding scheme around N is shown in Fig. 4.

Table 5. Equation of the mean plane of carboxyl group and deviations (\AA) of atoms from this plane, with e.s.d.'s in parentheses

The plane is represented by an equation of the type $l X+m Y$ $+n Z=P$, referred to an orthogonal system of axes, which has X along a, Y in the $a b$ plane and Z along c^{*}.

Plane: $\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(1), \mathrm{C}(2)$

$$
0.7884 X+0.5065 Y-0.3491 Z=2.4841
$$

$\mathrm{O}(1)$	$-0.000(19)$	$\mathrm{N} \dagger$	$-0.457(19)$
$\mathrm{O}(2)$	$-0.000(17)$	$\mathrm{C}(3) \dagger$	$1.442(30)$
$\mathrm{C}(1)$	$0.001(22)$	$\mathrm{C}(4) \dagger$	$1.944(35)$
$\mathrm{C}(2)$	$-0.000(22)$		

\dagger Atoms not included in the calculation of the plane.
Table 6. Hydrogen-bond distances (\AA) and angles (${ }^{\circ}$)
Symmetry code

(i)	x	y	z	(v)	x
(ii)	$-x$	$-y$	$-z$	(vi)	$-x$
	$1-y$	z			
(iii)	$-x$	$\frac{1}{2}+y$	$\frac{1}{2}-z$	(vii)	x
$\frac{1}{2}-y$	$z-\frac{1}{2}$				
(iv)	x	$\frac{1}{2}-y$	$\frac{1}{2}+z$		

Atoms belong to molecule i unless otherwise specified.

$\mathrm{O}(1)-\mathrm{H}(\mathrm{O} 1) \cdots \mathrm{O}(2)^{11}$	$2 \cdot 67$ (2)	$\mathrm{H}(\mathrm{O} 1) \cdots \mathrm{O}(2)^{11}$	$1 \cdot 68$ (16)
$\mathrm{N}-\mathrm{Hl}(\mathrm{N}) \cdots \mathrm{Br}(1)^{\text {iv }}$	$3 \cdot 47$ (2)	$\mathrm{Hl}(\mathrm{N}) \cdots \mathrm{Br}(1)^{1 \mathrm{lv}}$	2.67 (17)
$\mathrm{N}-\mathrm{H} 1(\mathrm{~N}) \cdots \mathrm{Br}(2)^{\mathrm{Hi}}$	$3 \cdot 63$ (2)	$\mathrm{Hl}(\mathrm{N}) \cdots \mathrm{Br}(2)^{111}$	2.73 (18)
$\mathrm{N}-\mathrm{H} 2(\mathrm{~N}) \cdots \mathrm{Br}(2)$	$3 \cdot 49$ (2)	$\mathrm{H} 2(\mathrm{~N}) \cdots \mathrm{Br}(2)$	$2 \cdot 88$ (18)
$\mathrm{N}-\mathrm{H} 2(\mathrm{~N}) \cdots \mathrm{Br}(1)^{\mathrm{v1}}$	$3 \cdot 61$ (2)	$\mathrm{H} 2(\mathrm{~N}) \cdots \mathrm{Br}(1)^{\text {v1 }}$	2.95 (19)
$\mathrm{N}-\mathrm{H} 3(\mathrm{~N}) \cdots \mathrm{Br}(3)^{v}$	$3 \cdot 41$ (2)	$\mathrm{H} 3(\mathrm{~N}) \cdots \mathrm{Br}(3)^{\text {v }}$	$2 \cdot 59$ (17)
$\mathrm{O}(1)-\mathrm{H}(\mathrm{O}$) $\cdots \mathrm{O}(2)^{11}$	170 (15)	
$\mathrm{N}-\mathrm{Hl}(\mathrm{N}) \cdots \operatorname{Br}(1)^{\text {iv }} \quad 128$ (12)			
$\mathrm{N}-\mathrm{H} 1(\mathrm{~N}) \cdots \mathrm{Br}(2)^{111} \quad 138$ (12)			
$\mathrm{N}-\mathrm{H} 2(\mathrm{~N}) \cdots \mathrm{Br}(2) \quad 116$ (11)			
$\mathrm{N}-\mathrm{H} 2(\mathrm{~N}) \cdots \mathrm{Br}(1)^{v 1} \quad 120$ (11)			
$\mathrm{N}-\mathrm{H} 3$ (N	N) $\cdots \operatorname{Br}(3)^{v}$	163 (15)	

Intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ distances (\AA) less than $4.200 \AA$

$\operatorname{Br}(1) \cdots \operatorname{Br}(2)^{v 1}$	$4 \cdot 063(4)$	$\operatorname{Br}(1) \cdots \operatorname{Br}(3)^{v 11}$	$4 \cdot 158(4)$
$\operatorname{Br}(1) \cdots \operatorname{Br}(2)^{\mathrm{vII}}$	$3.943(3)$	$\operatorname{Br}(2) \cdots \operatorname{Br}(3)^{111}$	$4 \cdot 134(4)$

The organic ions are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds around the centre of symmetry ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=$ $2.67 \AA$), as is usual for carboxylic acids.

Each Br atom is an acceptor of a H atom. $\mathrm{Br}(3)$ receives $\mathrm{H} 3(\mathrm{~N}) ; \operatorname{Br}(1)$ and $\mathrm{Br}(2)$ receive $\frac{1}{2} \mathrm{Hl}(\mathrm{N})$ and $\frac{1}{2} \mathrm{H} 2(\mathrm{~N})$ respectively.

In this study we may conclude that the protonated amino acid has no significant influence on the regularity of the octahedron TeBr_{6}^{2-}. Stability is governed by the hydrogen-bond network and intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ van der Waals contacts so that the packing of the molecules approaches close packing.

The authors thank Dr C. Stora for her kind interest in this work, Pr J. Dobrowolski for suggesting this study and supplying the samples and F. Robert for the registration of the data.

Fig. 4. Hydrogen-bond network around the N atom.

References

Adams, D. M. \& Morris, D. M. (1967). J. Chem. Soc. (A), pp. 2067-2069.

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1966). NRC Crystallographic Programs for the IBM/360 System. World List of Crystallographic Computer Programs, p. 52. Utrecht: Oosthoek.
Brown, I. D. (1964). Canad. J. Chem. 42, 2758-2767.
Bujewski, A. \& Dobrowolski, J. (1973). Rocz. Chem. 47, 401-405.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Oak-Ridge National Laboratory Report ORNL-TM-305.
Couch, D. A., Wilkins, C. J., Rossman, G. R. \& Gray, H. B. (1970). J. Amer. Chem. Soc. 92, 307-310.

Das, A. K. \& Brown, I. D. (1966). Canad. J. Chem. 44, 939-943.
Dobrowolski, J. \& Pastuszak, R. (1970). Rocz. Chem. 44, 1685-1688.
Gillespie, R. J. \& Nyholm, R. S. (1957). Quart. Rev. 11, 339-380.
Greenwood, N. N. (1970). Nature et Propriétés des Liaisons de Coordination, pp. 104-116. Paris: Editions du CNRS.
Ichikawa, T. \& Iitaka, Y. (1968). Acta Cryst. B24, 1488-1501.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-215. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Oak-Ridge National Laboratory Report ORNL-3794.
Johnstone, J. J., Jones, C. H. W. \& Vasudev, P. (1972). Canad. J. Chem. 50, 3037-3045.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 244-264. Ithaca: Cornell Univ. Press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

